Distributed Soccer Training Smart Sensors for Multitarget Localization and Tracking

Author:

Jiang Jian1ORCID,Qiu Zhiqun1ORCID

Affiliation:

1. Department of Humanities, Gannan University of Science and Technology, Ganzhou, Jiangxi 341000, China

Abstract

This paper presents an in-depth study and analysis of the localization and tracking of multiple targets in soccer training using a distributed intelligent sensor approach. An event-triggered mechanism is used to drive the acoustic array sensors in the distributed acoustic array sensor network, which solves the problem of increased communication load caused by frequent communication of microphones and effectively reduces the communication load between microphones as well as the energy consumption of the acoustic array sensor network. By designing a suitable state estimation equation for the acoustic source target and fully utilizing the measurement and state estimation information of its nodes as well as the state estimation information of neighboring nodes, the next moment state of the acoustic source target can be accurately predicted. A correlation filtering tracking algorithm based on multiscale spatial co-localization is proposed. In the proposed algorithm, the tracker contains a total of several subfilters with different sampling ranges. Then, this paper also proposes a collaborative discrimination method to judge the spatial response of the target image samples of each filter and jointly localize the target online. Based on this, this paper further explores the potential of correlation filter tracking algorithms in complex environments and proposes a robust correlation filter tracking algorithm that fuses multiscale spatial views. The cross-view geometric similarity measure based on multiframe pose information is proposed, and the matching effect is better than that based on single-frame cross-view geometric similarity; to solve the problem of player appearance similarity interference, a graph model-based cross-view appearance similarity measure learning method is further proposed, with players in each view as nodes, player appearance depth features as node attributes, and connections between cross-view players as edges to construct a cross-view player graph. The similarity obtained by the graph convolutional neural network training is better than the appearance similarity calculated based on simple cosine distance.

Funder

Department of Humanities, Gannan University of Science and Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3