Video Scene Information Detection Based on Entity Recognition

Author:

Qian Hui1ORCID,Dai Mengxuan1,Ma Yong1ORCID,Zhao Jiale1,Liu Qinghua1,Tao Tao1,Yin Shugang2,Li Haipeng3,Zhang Youcheng3

Affiliation:

1. School of Computer and Information Engineering, Jiangxi Normal University, Nanchang 330022, China

2. Siji Network Security Technology (Beijing) Co., Ltd., Beijing 102209, China

3. Nanjing Unary Information Technology Co., Ltd., Nanjing 210002, China

Abstract

Video situational information detection is widely used in the fields of video query, character anomaly detection, surveillance analysis, and so on. However, most of the existing researches pay much attention to the subject or video backgrounds, but little attention to the recognition of situational information. What is more, because there is no strong relation between the pixel information and the scene information of video data, it is difficult for computers to obtain corresponding high-level scene information through the low-level pixel information of video data. Video scene information detection is mainly to detect and analyze the multiple features in the video and mark the scenes in the video. It is aimed at automatically extracting video scene information from all kinds of original video data and realizing the recognition of scene information through “comprehensive consideration of pixel information and spatiotemporal continuity.” In order to solve the problem of transforming pixel information into scene information, this paper proposes a video scene information detection method based on entity recognition. This model integrates the spatiotemporal relationship between the video subject and object on the basis of entity recognition, so as to realize the recognition of scene information by establishing mapping relation. The effectiveness and accuracy of the model are verified by simulation experiments with the TV series as experimental data. The accuracy of this model in the simulation experiment can reach more than 85%.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3