Real‐World Image Deraining Using Model‐Free Unsupervised Learning

Author:

Yu RongweiORCID,Xiang JingyiORCID,Shu NiORCID,Zhang PeihaoORCID,Li YizhanORCID,Shen YiyangORCID,Wang WeimingORCID,Wang LinaORCID

Abstract

We propose a novel model‐free unsupervised learning paradigm to tackle the unfavorable prevailing problem of real‐world image deraining, dubbed MUL‐Derain. Beyond existing unsupervised deraining efforts, MUL‐Derain leverages a model‐free Multiscale Attentive Filtering (MSAF) to handle multiscale rain streaks. Therefore, formulation of any rain imaging is not necessary, and it requires neither iterative optimization nor progressive refinement operations. Meanwhile, MUL‐Derain can efficiently compute spatial coherence and global interactions by modeling long‐range dependencies, allowing MSAF to learn useful knowledge from a larger or even global rain region. Furthermore, we formulate a novel multiloss function to constrain MUL‐Derain to preserve both color and structure information from the rainy images. Extensive experiments on both synthetic and real‐world datasets demonstrate that our MUL‐Derain obtains state‐of‐the‐art performance over un/semisupervised methods and exhibits competitive advantages over the fully‐supervised ones.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3