A Support Vector Machine Based Prediction on Sensitivity to Coal Ash Blast for Different Degrees of Deterioration

Author:

Zhang Jing1ORCID,Wang Qingxia1,Guo Wannian1,Li Longlong1ORCID

Affiliation:

1. College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China

Abstract

Coal ash blast is a potential hazard that causes serious disasters in coal mines. In explosion control, research work on coal ash sensitivity prediction is of practical importance to improve accuracy, reduce blindness of explosion protection measures, and strengthen targets. The potential and destructive characteristics of coal ash blast vary greatly from coal to coal, especially in coal mines with complex and changing environments, where the characteristics of coal ash blast show great variability under the influence of various factors. In addition, due to the lack of systematic and comprehensive understanding of the occurrence mechanism of coal ash blast, it is necessary to conduct systematic research on the occurrence mechanism of coal ash blast. Current coal ash blast sensitivity summarizes and concludes prediction methods to create reliable predictions for coal ash blast. A new general learning method, support vector machine (SVM), has been developed, which provides a unified framework for solving limited sample training problems and can better solve small sample training problems. With the purpose of determining the coal mine problem and coal ash sensitivity prediction sensitivity indicators and thresholds, the SVM method is used to set the sensitivity function of each prediction indicator, and the sensitivity of each prediction indicator for the proposed study mine is expressed quantitatively. The experimental results show that the prediction accuracy of SVM for positive and negative categories is 15.6% higher than that of BP neural network and 35.1% higher than that of Apriori algorithm. Therefore, the prediction effectiveness of the SVM algorithm is proved. Therefore, it is practical to adopt SVM method for prediction on sensitivity to coal ash blast and apply the latest statistical learning theory SVM to predict the risk of coal ash.

Funder

Basic research program of Shanxi Province

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference30 articles.

1. Coal consumption prediction based on least squares support vector machine;Z. Li;IOP Conference Series Earth and Environmental Science,2019

2. Reliability prediction of further transit service based on support vector machine

3. PROPAGATION CHARACTERISTICS AND ENVIRONMENTAL IMPACT OF COAL DUST EXPLOSION

4. Coal mine safety risk prediction by RS-SVM combined model;Y. Wang;Journal of China University of Mining & Technology,2017

5. Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DT-MNLR: a novel hybrid machine learning framework for precise coke strength and reactivity prediction;Ironmaking & Steelmaking: Processes, Products and Applications;2024-04-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3