Residential Energy-Saving Lighting Based on Bioinspired Algorithms

Author:

Wu Yuhang1,Zhang Yitong1,Ilmin Nah1ORCID,Sui Jing23ORCID

Affiliation:

1. Graduate School of Technical Design Staff, Kookmin University, Seoul 02707, Republic of Korea

2. Kookmin University, Graduate School of Techno Design (TED), Seoul 02707, Republic of Korea

3. LuXun Academy of Fine Arts, Shenyang 110003, China

Abstract

Traditional residential lighting systems have the problem of high energy consumption. Based on artificial neural network (ANN), combined with particle swarm optimization algorithm, and genetic algorithm to optimize the initial weights and thresholds, an improved ANN prediction model for residential energy-saving lighting is proposed, and an actual residential lighting project is taken as an example to verify it. The results show that the proposed method can quickly predict the number of residential lighting lamps under the premise of meeting the standard illumination of residential lighting. The prediction accuracy can reach 98.45%, which has the characteristics of high prediction accuracy and small error. Compared with the ANN model and ANFIS model, the average relative error of the proposed prediction model is reduced by 2.29% and 0.87%, respectively, which has certain effectiveness and superiority. It provides a new idea for residential energy-saving lighting.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scenario-Based Neural Network Model for Integrated Lighting Schemes in Residential Buildings;Advances in Data-driven Computing and Intelligent Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3