Study on the Influencing Mechanism of Human Chorionic Gonadotropin (hCG) on Oocyte Maturation in Patients with Polycystic Ovary Syndrome

Author:

Jiang Jingjing1,Gao Shanshan1,Han Ting1ORCID

Affiliation:

1. Center for Reproductive Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250021 Shandong, China

Abstract

The study was aimed at investigating the influence of human chorionic gonadotropin (hCG) hormone on oocyte maturation in the patients with polycystic ovary syndrome (PCOS). A total of 54 patients with PCOS who received in vitro maturation (IVM) treatment in the Cheeloo College of Medicine, Shandong University, were divided into two groups: one group who underwent hCG injections was the observation group (OG; n = 27 ) and other was the control group (CG; n = 27 ) with no hCG injection. The oocyte development and the expression of steroid hormone synthesis-related genes including gonadotropin-releasing hormone receptor (GnRHR), Conexin43, epidermal growth factor-related genes, luteinizing hormone/choriogonadotropin receptor (LHCGR), epiregulin (EREG), and vascular endothelial growth factor (VEGF) were examined. The human ovarian granulosa cell line (SVOG cells) and ovarian epithelial cell line (HOSEpiC cells) were employed to analyze the effect of hCG on the biological behaviour of cells. As a result, OG showed higher normal fertilization, cleavage, and high-qualified embryo rate than CG. Expression levels of GnRHR, Cx43, LHCGR, EREG, and VEGF were significantly elevated in granulosa cells in the OG group. Western blot revealed that phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and rapamycin (mTOR) proteins were decreased in granulosa cells under hCG intervention. A biological behaviour test indicated that the multiplication capacity of hCG-intervened SVOG and HOSEpiC was increased, while the apoptosis was decreased. In conclusion, hCG could accelerate follicular development and oocyte maturation by activating oocyte maturation genes in PCOS patients, which could significantly improve and popularize the application of IVM technology.

Funder

Shandong Province Medical and Health Technology Development Plan

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3