Affiliation:
1. Center for Reproductive Medicine, Shandong University, No. 157 Jingliu Road, Jinan, 250021 Shandong, China
Abstract
The study was aimed at investigating the influence of human chorionic gonadotropin (hCG) hormone on oocyte maturation in the patients with polycystic ovary syndrome (PCOS). A total of 54 patients with PCOS who received in vitro maturation (IVM) treatment in the Cheeloo College of Medicine, Shandong University, were divided into two groups: one group who underwent hCG injections was the observation group (OG;
) and other was the control group (CG;
) with no hCG injection. The oocyte development and the expression of steroid hormone synthesis-related genes including gonadotropin-releasing hormone receptor (GnRHR), Conexin43, epidermal growth factor-related genes, luteinizing hormone/choriogonadotropin receptor (LHCGR), epiregulin (EREG), and vascular endothelial growth factor (VEGF) were examined. The human ovarian granulosa cell line (SVOG cells) and ovarian epithelial cell line (HOSEpiC cells) were employed to analyze the effect of hCG on the biological behaviour of cells. As a result, OG showed higher normal fertilization, cleavage, and high-qualified embryo rate than CG. Expression levels of GnRHR, Cx43, LHCGR, EREG, and VEGF were significantly elevated in granulosa cells in the OG group. Western blot revealed that phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and rapamycin (mTOR) proteins were decreased in granulosa cells under hCG intervention. A biological behaviour test indicated that the multiplication capacity of hCG-intervened SVOG and HOSEpiC was increased, while the apoptosis was decreased. In conclusion, hCG could accelerate follicular development and oocyte maturation by activating oocyte maturation genes in PCOS patients, which could significantly improve and popularize the application of IVM technology.
Funder
Shandong Province Medical and Health Technology Development Plan
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献