Study on the Sustainable Development Strategy of School Soccer Based on the Background of Big Data Era

Author:

Zhang Jun1,Liang Dong1ORCID,Sun Zhang1ORCID

Affiliation:

1. Guangzhou Xinhua University, Guangzhou, Guangdong 510520, China

Abstract

Big Data is the most popular concept in this era, which is the massive amount of information and related technology generated by the information explosion in the era of “Internet+.” Big Data is the most popular concept of our time. With the most advanced technology to collect, analyze, organize, and store data, Big Data can effectively handle all kinds of complex information. Because of this, big data is widely favored by all walks of life. In China’s sports industry, the use of big data has become mature and has shown its unique advantages. With the development of campus soccer in China in the past decade, how to use big data to promote the sustainable development of campus soccer in China has become a key issue for sports workers to consider today. Based on the above background, this paper proposes a system combining data mining and personalized data recommendation to collect and analyze the information of campus soccer to promote the sustainable development of campus soccer. First, we propose a data mining method based on deep learning data mining network model combined with migration learning to address the data mining problem. The method uses the knowledge of historical model parameters and applies them to new tasks, thus solving the problem of network training when samples are lacking and improving data utilization and data mining effects. Then, for the data recommendation problem, a new deep learning method is proposed, which performs effective intelligent recommendation by pretraining. In the initial phase, the corresponding low-dimensional embedding vectors are learned, which capture information reflecting the relevance of students to soccer sports. During the prediction phase, a feed-forward neural network is used to model the interaction of student and soccer sport information, where the corresponding pretrained representative vectors are used as inputs to the neural network. Finally, it is experimentally verified that the data mining method proposed in this paper can effectively improve the data mining performance and efficiency, and the proposed data recommendation method possesses better accuracy than the traditional methods. The use of this system can effectively collect and analyze campus soccer information, which helps to develop campus soccer and promote the sustainable development of campus soccer.

Funder

Guangzhou Xinhua University

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Reference29 articles.

1. Sport for Sustainability? The Extractives Industry, Sport, and Sustainable Development

2. Partnership among schools in e-Learning implementation: implications on elements for sustainable development;S. C. Kong;Journal of Educational Technology & Society,2019

3. Revolutionary of school youth soccer management development in;B. Lusheng;Journal of Positive School Psychology,2022

4. Olympic Sport and the Ideal of Sustainable Development

5. Community agency and sustainable tourism development: the case of La Fortuna, Costa Rica

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3