Investigation of the Potential Mechanism of Alpinia officinarum Hance in Improving Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking

Author:

Zhang Xuguang1,Li Xiangyi1ORCID,Li Hailong1,Zhou Mingyan1,Zhang Yuxin1,Lai Weiyong1,Zheng Xiuwen1,Bai Feihu2ORCID,Zhang Junqing1ORCID

Affiliation:

1. Hainan Provincial Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou, China

2. The Gastroenterology Clinical Medical Center of Hainan Province, Department of Gastroenterology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China

Abstract

Objective. We used network pharmacology, molecular docking, and cellular analysis to explore the pharmacodynamic components and action mechanism of Alpinia officinarum Hance (A. officinarum) in improving type 2 diabetes mellitus (T2DM). Methods. The protein-protein interaction (PPI) network, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to predict the potential targets and mechanism of A. officinarum toward improving T2DM. The first 9 core targets and potential active compounds were docked using Discovery Studio 2019. Finally, IR-HepG2 cells and qPCR were applied to determine the mRNA expression of the top 6 core targets of the PPI network. Results. A total of 29 active ingredients and 607 targets of A. officinarum were obtained. T2DM-related targets overlapped with 176 targets. The core targets of the PPI network were identified as AKT serine/threonine kinase 1 (AKT1), an activator of transcription 3 (STAT3), tumor necrosis factor (TNF), tumor protein p53 (TP53), SRC proto-oncogene, nonreceptor tyrosine kinase (SRC), epidermal growth factor receptor (EGFR), albumin (ALB), mitogen-activated protein kinase 1 (MAPK1), and peroxisome proliferator-activated receptor gamma (PPARG). A. officinarum performs an antidiabetic role via the AGE-RAGE signaling pathway, the HIF-1 signaling pathway, the PI3K-AKT signaling pathway, and others, according to GO and KEGG enrichment analyses. Molecular docking revealed that the binding ability of diarylheptanoid active components in A. officinarum to core target protein was higher than that of flavonoids. The cell experiments confirmed that the A. officinarum extracts improved the glucose uptake of IR-HepG2 cells and AKT expression while inhibiting the STAT3, TNF, TP53, SRC, and EGFR mRNA expression. Conclusion. A. officinarum Hance improves T2DM by acting on numerous components, multiple targets, and several pathways. Our results lay the groundwork for the subsequent research and broaden the clinical application of A. officinarum Hance.

Funder

Hainan Medical University

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3