Study on the Equivalence of Penetration Overloading for Projectile-Borne Components in Nonproportional Penetrators

Author:

Yan Amin12ORCID,Pi Aiguo1ORCID,Yang He3,Huang Fenglei1,Wang Xiaofeng1

Affiliation:

1. State Key Laboratory of Explosive Science and Technology, Beijing Institute of Technology, Beijing 100081, China

2. State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

3. Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999, China

Abstract

The reliability assessment of the projectile-borne components in a high-speed penetrator is an important issue in the penetration field. In this study, a scaling model embedded with a deceleration measurement device was used to investigate the overloading situation due to the high cost of the prototype test. The projectile could be scaled, while the deceleration measurement device needs to maintain full scale. Thus, a nonproportional scaling design is proposed to represent the rigid-body deceleration of the prototype projectile. This study, considering the mass of the deceleration measurement device, lays out the design criteria of the scaling model and carries out rigid-body deceleration similarity verification tests of the prototype and the scaling model. In addition, the rigid-body deceleration similarity was examined through model predictions and numerical simulation. These results show that the rigid-body deceleration of the nonproportional scaling model is generally in agreement with that of the prototype for penetrating the semi-infinite concrete target. The deviations of rigid-body deceleration magnitude and duration are 6.76% and −12.1%, respectively. This makes it reasonable and feasible to investigate the overloading situation of prototype projectile through a nonproportional scaling model.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A new high-g measurement system for severe perforation tests;2023 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL);2023-03-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3