Intravenous Flat-Detector Computed Tomography Angiography for Symptomatic Cerebral Vasospasm following Aneurysmal Subarachnoid Hemorrhage

Author:

Jeon Jin Pyeong1,Sheen Seung Hun2,Cho Yong-Jun3

Affiliation:

1. Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Republic of Korea

2. Department of Neurosurgery, Bundang Jesaeng Hospital, Kwandong University College of Medicine, Bundang, Republic of Korea

3. Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea

Abstract

The study evaluated the diagnostic accuracy of intravenous flat-detector computed tomography (IV FDCT) angiography in assessing hemodynamically significant cerebral vasospasm in patients with subarachnoid hemorrhage (SAH) with digital subtraction angiography (DSA) as the reference. DSA and IV FDCT were conducted concurrently in patients suspected of having symptomatic cerebral vasospasm postoperatively. The presence and severity of vasospasm were estimated according to location (proximal versus distal). Vasospasm >50% was defined as having hemodynamic significance. Vasospasms <30% were excluded from this analysis to avoid spectrum bias. Twenty-nine patients (311 vessel segments) were measured. The intra- and interobserver agreements were excellent for depicting vasospasm (k=0.84and 0.74, resp.). IV FDCT showed a sensitivity of 95.7%, specificity of 92.3%, positive predictive value of 93.6%, and negative predictive value of 94.7% for detecting vasospasm (>50%) with DSA as the reference. Bland-Altman plots revealed good agreement of assessing vasospasm between the two tests. The discrepancy of vasospasm severity was more noted in the distal location with high-severity. However, it was not statistically significant (Spearman’s rank test;r=0.15,P=0.35). Therefore, IV FDCT could be a feasible noninvasive test to evaluate suspected significant vasospasm in SAH.

Publisher

Hindawi Limited

Subject

General Environmental Science,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3