Bisphenol A Does Not Mimic Estrogen in the Promotion of the In Vitro Response of Murine Dendritic Cells to Toll-Like Receptor Ligands

Author:

Chakhtoura Marita1,Sriram Uma12,Heayn Michelle3,Wonsidler Joshua3,Doyle Christopher3,Dinnall Joudy-Ann2,Gallucci Stefania12ORCID,Roberts Rebecca A.34

Affiliation:

1. Laboratory of Dendritic Cell Biology, Department of Microbiology-Immunology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA

2. Division of Rheumatology, Joseph Jr. Stokes Research Institute, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA

3. Department of Biology, Ursinus College, Collegeville, PA 19426, USA

4. Biochemistry and Molecular Biology Program, Ursinus College, Collegeville, PA 19426, USA

Abstract

Sex hormones affect immune responses and might promote autoimmunity. Endocrine disrupting chemicals such as bisphenol A (BPA) may mimic their immune effects. Conventional dendritic cells (cDCs) are pivotal initiators of immune responses upon activation by danger signals coming from pathogens or distressed tissues through triggering of the Toll-like receptors (TLRs). We generated in vitro murine cDCs in the absence of estrogens and measured the effects of exogenously added estrogen or BPA on their differentiation and activation by the TLR ligands LPS and CpG. Estrogen enhanced the differentiation of GM-CSF-dependent cDCs from bone marrow precursors in vitro, and the selective estrogen receptor modulators (SERMs) tamoxifen and fulvestrant blocked these effects. Moreover, estrogen augmented the upregulation of costimulatory molecules and proinflammatory cytokines (IL-12p70 and TNFα) upon stimulation by TLR9 ligand CpG, while the response to LPS was less estrogen-dependent. These effects are partially explained by an estrogen-dependent regulation of TLR9 expression. BPA did not promote cDC differentiation nor activation upon TLR stimulation. Our results suggest that estrogen promotes immune responses by increasing DC activation, with a preferential effect on TLR9 over TLR4 stimulation, and highlight the influence of estrogens in DC cultures, while BPA does not mimic estrogen in the DC functions that we tested.

Funder

Arthritis Foundation

Publisher

Hindawi Limited

Subject

Cell Biology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3