Numerical Uncoupling of Domains in Dam-Reservoir Problem

Author:

Golchin Saba1ORCID,Attarnejad Reza1ORCID,Vahdani Shahram1ORCID

Affiliation:

1. School of Civil Engineering, University of Tehran, Tehran, Iran

Abstract

Flexibility of dam structure affects the hydrodynamic pressure acting on the dam. Several approaches have been proposed to consider this effect. Most of these approaches are involved with an iterative scheme. Of course solving the total numerical model including the dam and the reservoir is the most accurate method, but it has certain deficiencies. Using the frontal solution method of total model, dam structure, and fluid domain and keeping the interface degrees of freedom in the front is proposed in the current study. Having the solution of the interface degrees of freedom, the structure and fluid may be analyzed separately. The main advantage of the method lies in the fact that the accuracy of the results is the same as analysis of the total model, no iteration is necessary, combination of Lagrangian and Eulerian formulations for solid and fluid may be used, and the unknown variables are of the same order. Performing the analysis in time domain extends the method to nonlinear analysis if required.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3