Evaluation of Real-World Fuel Consumption of Hybrid-Electric Passenger Car Based on Speed-Specific Vehicle Power Distributions

Author:

Peng Fei1ORCID,Zhang Ye1ORCID,Song Guohua1ORCID,Huang Jianchang1ORCID,Zhai Zhiqiang1,Yu Lei123

Affiliation:

1. Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Beijing Jiaotong University, Beijing 100044, China

2. Xuchang University, Xuchang 461000, China

3. Department of Transportation Studies, Texas Southern University, Houston 77004, USA

Abstract

Fuel consumption differs between the hybrid electric vehicle (HEV) and the conventional vehicle (CV). However, traditional fuel consumption models developed for CVs are commonly applied to HEVs, which leads to uncertainties in the quantitative evaluation of energy consumption for passenger cars in traffic road networks. Considering the internal combustion engine (ICE) operating modes of hybrid vehicles among varying vehicle specific power (VSP) demand, we present a method to incorporate the HEV ICE speed to develop speed-specific VSP distributions for real-world driving conditions. Using vehicle trajectory and fuel consumption data in real traffic conditions, the results of this study show that the application of methods developed for CVs leads to a significant underestimation of fuel consumption for HEVs when the average speed is in the high-speed range (over 50 km/h) and a significant overestimation of fuel consumption when the average speed is in the low-speed range (below 30 km/h). The average relative error of the measured fuel consumption factor in each speed bin is 7.1% compared with real-world observations, which is an unacceptably large error. This paper proposes a method to develop the speed-specific VSP distribution, considering whether the internal combustion engine (ICE) of HEVs is on or off. This approach reduces the average relative error of the obtained fuel consumption compared with real-world observations to 2.2%, and the measuring accuracy at different average speeds is significantly improved. This method enhances the functionality and applicability of the VSP theory-based traffic energy model for HEVs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3