An Accelerated Error Convergence Design Criterion and Implementation of Lebesgue-p Norm ILC Control Topology for Linear Position Control Systems

Author:

Riaz Saleem1ORCID,Lin Hui1ORCID,Waqas Muhammad2ORCID,Afzal Farkhanda3ORCID,Wang Kai4ORCID,Saeed Nasir5ORCID

Affiliation:

1. School of Automation, Northwestern Polytechnical University, Shaanxi, Xi’an 170072, China

2. Department of Material Science and Mechanical Engineering, Beijing University of Technology, Beijing, China

3. MCS, National University of Sciences and Technology, Islamabad, Pakistan

4. School of Electrical Engineering, Qingdao University, Qingdao 266000, China

5. Department of Electrical Engineering, National University of Technology, Islamabad, Pakistan

Abstract

Traditional and typical iterative learning control algorithm shows that the convergence rate of error is very low for a class of regular linear systems. A fast iterative learning control algorithm is designed to deal with this problem in this paper. The algorithm is based on the traditional P-type iterative learning control law, which increases the composition of adjacent two overlapping quantities, the tracking error of previous cycle difference signals, and the current error difference. Using convolution to promote Young inequalities proved strictly that, in terms of Lebesgue-p norm, when the number of iterations tends to infinity, the tracking error converges to zero in the system and presents the convergence condition of the algorithm. Compared with the traditional P-type iterative learning control algorithm, the proposed algorithm improves convergence speed and evades the defect using the norm metric’s tracking error. Finally, the validation of the effectiveness of the proposed algorithm is further proved by simulation results.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3