Hydrogeochemical Characteristics and Water–Rock Interactions of Coalbed-Produced Water Derived from the Dafosi Biogenic Gas Field in the Southern Margin of Ordos Basin, China

Author:

Bao Yuan12ORCID,An Chao1,Wang Chaoyong2ORCID,Guo Chen1,Wang Wenbo1

Affiliation:

1. Geological Research Institute for Coal Green Mining, College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China

2. Key Laboratory of CBM Resource and Reservoir Formation Process, Ministry of Education, School of Resources and Geosciences, China University of Mining and Technology, Xuzhou 221008, China

Abstract

The hydrogeochemical characteristics of coalbed-produced water can provide insights into the sources of ions and water, the groundwater environments, hydrodynamic conditions, and water-rock interactions of depositional basins. To study the water-rock reaction process and reveal whether there is a microbial activity in the groundwater, a case of the Dafosi biogenic gas field was chosen by testing the ionic concentrations and hydrogen and oxygen isotopic compositions of coalbed-produced water and employing R-type cluster and principal component analyses. The results showed that Na+, Cl , and HCO3- are the principal ions in the coalbed-produced water, while the water type is mainly a Na–Cl. Due to the hydrolysis of HCO3-, the pH in this region was controlled primarily by HCO3-. As the main cation in water, Na+ contributed substantially to the total dissolved solids. Na+ is also related to the exchange between rock-bound Na+ and Ca2+ and Mg2+ in water or surrounding rocks. The coalbed-produced water’s oxygen isotopes displayed a characteristic 18O drift and enrichment, indicating that the 16O isotope in the water was preferentially exchanged with the coal organic matter. Early evaporation is also contributed to the enrichment of TDS (total dissolved solids) and 18O in the water. The central part of the study area, including the Qijia anticline, was affected by the Yanshanian uplift and denudation and subsequently developed a water-conducting fissure zone and was recharged atmospheric precipitation; these conditions were conducive to the formation of secondary biogenic gas.

Funder

China University of Mining and Technology

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3