Corrosion Study of Aluminum Alloy 3303 in Water-Ethylene Glycol Mixture: Effect of Inhibitors and Thermal Shocking

Author:

Asadikiya Mohammad123ORCID,Zhong Yu12,Ghorbani Mohammad3

Affiliation:

1. Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, USA

2. Center for the Study of Matter at Extreme Conditions (CeSMEC), Florida International University, Miami, Florida 33199, USA

3. Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran

Abstract

Three types of corrosion inhibitors consisting of sodium diphosphate (Na2H2P2O7), sodium benzoate (NaC7H5O2), and sodium tetraborate (Na2B4O7) were evaluated to analyze their effectiveness to inhibit the aluminum alloy 3303 (UNS A93303) against corrosion, in water-ethylene glycol (C2H6O2) mixture. Potentiodynamic polarization tests were carried out to study the effect of each chemical. The temperature of solutions was 88°C and the aluminum samples were coupled with five other metals consisting of mild steel, stainless steel, brass, copper, and solder to include the effect of galvanic corrosion. The results showed that sodium diphosphate can effectively protect the aluminum alloy 3303 in comparison with two other chemicals. The effect of thermal shocking on the corrosivity of water-ethylene glycol solution was also investigated. It was indicated that the corrosivity of water-ethylene glycol solution increases because of thermal shocking, which oxidizes the aqueous ethylene glycol. The corrosion rate of aluminum alloy 3303 coupled with the five metals in thermal shocked water-ethylene glycol solution is 142 mpy, while it is 94 mpy in fresh water-ethylene glycol solution.

Funder

Maham Imensaz Company

Publisher

Hindawi Limited

Subject

Process Chemistry and Technology,General Materials Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3