Study on the Pressure Characteristics of Shock Wave Propagating across Multilayer Structures during Underwater Explosion

Author:

Meng Zi-Fei1ORCID,Cao Xue-Yan1ORCID,Ming Fu-Ren1ORCID,Zhang A-Man1,Wang Bin2

Affiliation:

1. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China

2. National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621900, China

Abstract

The propagation of the shock wave across multilayer structures during underwater explosion is a very complex physical phenomenon, involving violent fluid-structure interaction (FSI) problems. In this paper, the coupled Eulerian–Lagrangian (CEL) method in AUTODYN is used to simulate the process of shock wave propagation and solve FSI problems. Firstly, the governing equation and the treatment of fluid and structure interface of the CEL method are briefly reviewed. Afterwards, two underwater explosion numerical models are established, and the results are compared with the empirical formula and experimental data, respectively, to verify the reliability of numerical solutions. The results obtained by this method show good agreements with those of the empirical formula and experiment. Furthermore, the model of the multilayer structures composed of two hemispherical shells and the fluid filled between the shells subjected to underwater explosion is established, and the pressure characteristics of the shock wave propagating across the multilayer structures are analyzed regarding the wave reflection and transmission. Finally, the effects of the shell thickness and the filled fluid type among the multilayer structures on the wave reflection and transmission are studied.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3