Nonlinear Seepage Model of Gas Transport in Multiscale Shale Gas Reservoirs and Productivity Analysis of Fractured Well

Author:

Huang Ting1,Guo Xiao1,Wang Kun2

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Xindu Road 8, Chengdu 610500, China

2. Research Institute of CNOOC Ltd., Shenzhen Branch, Guangzhou 510240, China

Abstract

Shale is abundant in nanoscale pores, so gas flow in shales cannot be simply represented by Darcy formula anymore. It is crucial to figure out the influence of gas flow in nano/micro pores on actual productivity, which can provide basic theories for optimizing parameters and improving the gas production from engineering perspective. This paper considers the effects of slippage and diffusion in nanoscale based on Beskok-Karniadakis (BK) equation, which can be applicable for different flow regimes including continuum flow, slip flow, transition flow, and free-molecule flow. A new non-Darcy equation was developed based on the analysis of effects of high order terms of BK equation on permeability correction factor. By using the conformal transformation principle and pressure coupling method, we established the productivity formula of fractured well (infinite and limited conductivity) satisfying mass variable seepage flowing in fractures. The simulation results have been compared with field data and influencing parameters are analyzed thoroughly. It is concluded that slippage effect affects gas production of fractured well when wellbore pressure is less than 15 MPa, and the effects of slippage and diffusion have greater influence on gas production of fractured well for reservoir with smaller permeability, especially when permeability is at nano-Darcy scale.

Funder

National Program on Key Basic Research Project

Publisher

Hindawi Limited

Subject

General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3