EEG-Based Epilepsy Recognition via Multiple Kernel Learning

Author:

Yao Yufeng12ORCID,Ding Yan2ORCID,Zhong Shan2ORCID,Cui Zhiming3ORCID,Huang Chenxi

Affiliation:

1. The Institute of Intelligent Information Processing and Application, Soochow University, Suzhou 215006, China

2. Department of Computer Science and Engineering, Changshu Institute of Technology, Changshu 215500, China

3. Suzhou University of Science and Technology, Suzhou 215009, China

Abstract

In the field of brain-computer interfaces, it is very common to use EEG signals for disease diagnosis. In this study, a style regularized least squares support vector machine based on multikernel learning is proposed and applied to the recognition of epilepsy abnormal signals. The algorithm uses the style conversion matrix to represent the style information contained in the sample, regularizes it in the objective function, optimizes the objective function through the commonly used alternative optimization method, and simultaneously updates the style conversion matrix and classifier during the iteration process parameter. In order to use the learned style information in the prediction process, two new rules are added to the traditional prediction method, and the style conversion matrix is used to standardize the sample style before classification.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

Reference32 articles.

1. The Nature of Statistical Learning Theory

2. Faster Kernel Ridge Regression Using Sketching and Preconditioning

3. Kernel Support Vector Machine for Domain Adaptation

4. Large-scale kernel methods via ran-dom hypothesis spaces;Feng;Journal of Frontiers of Comp-uter Science & Technology,2018

5. Kernel PCA pattern reconstruction via approximation preimages;Schölkopf

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3