Electric Vehicles and Storage Systems Integrated within a Sustainable Urban District Fed by Solar Energy

Author:

Bracco Stefano1ORCID,Delfino Federico1,Longo Michela2ORCID,Siri Silvia3

Affiliation:

1. Department of Naval, Electrical, Electronic and Telecommunication Engineering, University of Genoa, Savona Campus, Via Magliotto 2, 17100 Savona, Italy

2. Department of Energy, Politecnico di Milano, Via La Masa 34, 20156 Milan, Italy

3. Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Via Opera Pia 13, 16145 Genoa, Italy

Abstract

In this paper, an optimization model is defined for the design of a smart energy infrastructure integrating different technologies to satisfy the electrical demand of a given site. The considered smart energy infrastructure includes a photovoltaic plant, electrical storage systems, electric vehicles (EVs), and charging stations. The objective function of the optimization model considers the costs related to the installation and maintenance of the considered technologies, as well as the costs associated with the energy exchanges with the external grid. A very extensive numerical analysis is reported in the paper, referred to a test case in a real site in Liguria Region, in the north of Italy. Many scenarios are analyzed and discussed, with specific attention to evaluate the role of electric mobility within a smart energy infrastructure and a focus on EVs acting as mobile storage systems.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3