Vaspin Attenuates Atrial Abnormalities by Promoting ULK1/FUNDC1-Mediated Mitophagy

Author:

Zhu Yanmin12,Gu Zhoushan1,Shi Jiayu1,Chen Chu1,Xu Haixia1ORCID,Lu Qi1ORCID

Affiliation:

1. Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu 226001, China

2. Department of Cardiology, The First Peoples’ Hospital of Taicang, The Affiliated Taicang Hospital of Soochow University, Taicang, Jiangshu 215300, China

Abstract

The worldwide incidence and prevalence of atrial fibrillation (AF) are increasing, making it a life-threatening condition due to the higher numbers of people suffering from obesity. Vaspin, an adipokine derived from epicardial adipose tissue, has been reported to reduce inflammation, inhibit apoptosis, and induce autophagy; however, its role in the pathogenesis of AF is not known. In this study, we investigated the role of vaspin in patients with AF and explored the molecular mechanisms using atrial myocytes in vitro. Our data showed that vaspin levels were significantly reduced in the plasma of patients with AF. Lower plasma levels of vaspin were also associated with a higher risk of AF in patients with obesity. Vaspin treatment in vitro alleviated cardiomyocyte injury, atrial fibrosis, atrial myocyte apoptosis, and mitochondrial injury in atrial myocytes following Ang-II stress. Moreover, our results demonstrated that vaspin protected against Ang-II-induced atrial myocyte dysfunction by inducing mitophagy. We also observed that vaspin treatment enhanced the phosphorylation of Fun14 domain-containing protein 1 (FUNDC1) at Ser17 by unc-51 like autophagy activating kinase 1 (ULK1), resulting in the induction of mitophagy. These positive effects of vaspin were reversed by ULK1 silencing in Ang-II-stimulated HL-1 cells. Our study is the first to propose that vaspin plays a vital role in AF pathogenesis via ULK1/FUNDC1-regulated mitophagy and could be a novel therapeutic target for AF.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3