Machine Learning-Based Relative Performance Analysis of Monocrystalline and Polycrystalline Grid-Tied PV Systems

Author:

Yar Asfand1ORCID,Arshad Muhammad Yousaf23ORCID,Asghar Faran4,Amjad Waseem1ORCID,Asghar Furqan1ORCID,Hussain Muhammad Imtiaz5ORCID,Lee Gwi Hyun6ORCID,Mahmood Faisal1ORCID

Affiliation:

1. Department of Energy Systems Engineering, University of Agriculture, Faisalabad, Pakistan

2. Sitara Chemical Industries Pvt. Ltd., Faisalabad, Pakistan

3. Department of Chemical Engineering, University of Engineering and Technology (U.E.T) Lahore, Pakistan

4. School of Information Management, Nanjing University, Nanjing, China

5. Agriculture and Life Sciences Research Institute Kangwon National University, Chuncheon 24341, Republic of Korea

6. Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341, Republic of Korea

Abstract

In this research study, the design and performance evaluation of grid-tied photovoltaic systems has been carried out through experimentation, HelioScope simulation, and black-box machine learning methods for data-driven artificial intelligence system performance assessment and validation. The proposed systems are based on 15 kWp of monoperk and polyperk, which are separately installed in the industrial sector of Faisalabad, Pakistan. The experimental evaluation of the installed PV modules was performed from November 2020 to August 2021. The performance of the PV modules was evaluated by determining the annual average daily final yield (If), performance ratio (PR), and capacity factor (CF). The study showed that the annual average of daily final yield, performance ratio, and capacity factor for 15 kW polyperk was estimated to be 61.94 kWh, 84.17%, and 19.12, respectively. The annual average of daily final yield, performance ratio, and capacity factor for 15 kW monoperk was estimated to be 58.32 kWh, 81.42%, and 18.13, respectively. A comparison of final yield is obtained from simulation and real-time systems obtained from polyperk PV and monoperk. A significant mean error exists between the experimentation and simulation results which lie within the range of 1250 to 1470 kWh and 1600 to 1950 kWh, respectively. Substantial differences between both aforementioned results were initially tested and highlighted by statistical values; i.e., the standard error lies in-between 5 and 45% in polyperk crystalline and 5 and 25% in monocrystalline PV grid-connected module. Machine learning logistical regression evaluated that monoperk crystalline grid-connected system, experimental work was found to be more reliable with error difference reduces in off-peak months as compared to corresponding simulation study and vice versa for polyperk crystalline grid-connected system. Model accuracy after training and testing produced resulted up to 99.5% accuracy for either grid-connected experimentation or simulation outcomes with validation.

Funder

Ministry of Agriculture, Food and Rural Affairs

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3