Affiliation:
1. Department of Communication Engineering, Xiamen University, Xiamen, Fujian 361005, China
Abstract
To improve the spatial resolution of reconstructed images/videos, this paper proposes a Superresolution (SR) reconstruction algorithm based on iterative back projection. In the proposed algorithm, image matching using critical-point filters (CPF) is employed to improve the accuracy of image registration. First, a sliding window is used to segment the video sequence. CPF based image matching is then performed between frames in the window to obtain pixel-level motion fields. Finally, high-resolution (HR) frames are reconstructed based on the motion fields using iterative back projection (IBP) algorithm. The CPF based registration algorithm can adapt to various types of motions in real video scenes. Experimental results demonstrate that, compared to optical flow based image matching with IBP algorithm, subjective quality improvement and an average PSNR score of 0.53 dB improvement are obtained by the proposed algorithm, when applied to video sequence.
Funder
National Natural Science Foundation of China
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献