A New Hybrid Nelder-Mead Particle Swarm Optimization for Coordination Optimization of Directional Overcurrent Relays

Author:

Liu An12,Yang Ming-Ta3

Affiliation:

1. Department of Computer Science and Information Engineering, St. John's University, No. 499, Section 4, Tam King Road, Tamsui District, New Taipei City 25135, Taiwan

2. Graduate Institute of Computer and Communication Engineering, National Taipei University of Technology, No. 1, Section 3, Chung Hsiao East Road, Taipei 10608, Taiwan

3. Department of Electrical Engineering, St. John's University, No. 499, Section 4, Tam King Road, Tamsui District, New Taipei City 25135, Taiwan

Abstract

Coordination optimization of directional overcurrent relays (DOCRs) is an important part of an efficient distribution system. This optimization problem involves obtaining the time dial setting (TDS) and pickup current (Ip) values of each DOCR. The optimal results should have the shortest primary relay operating time for all fault lines. Recently, the particle swarm optimization (PSO) algorithm has been considered an effective tool for linear/nonlinear optimization problems with application in the protection and coordination of power systems. With a limited runtime period, the conventional PSO considers the optimal solution as the final solution, and an early convergence of PSO results in decreased overall performance and an increase in the risk of mistaking local optima for global optima. Therefore, this study proposes a new hybrid Nelder-Mead simplex search method and particle swarm optimization (proposed NM-PSO) algorithm to solve the DOCR coordination optimization problem. PSO is the main optimizer, and the Nelder-Mead simplex search method is used to improve the efficiency of PSO due to its potential for rapid convergence. To validate the proposal, this study compared the performance of the proposed algorithm with that of PSO and original NM-PSO. The findings demonstrate the outstanding performance of the proposed NM-PSO in terms of computation speed, rate of convergence, and feasibility.

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3