An Automatic Tree Skeleton Extracting Method Based on Point Cloud of Terrestrial Laser Scanner

Author:

Li Ronghao1,Bu Guochao1,Wang Pei1ORCID

Affiliation:

1. College of Science, Beijing Forestry University, Beijing, China

Abstract

Tree skeleton could describe the shape and topological structure of a tree, which are useful to forest researchers. Terrestrial laser scanner (TLS) can scan trees with high accuracy and speed to acquire the point cloud data, which could be used to extract tree skeletons. An adaptive extracting method of tree skeleton based on the point cloud data of TLS was proposed in this paper. The point cloud data were segmented by artificial filtration and k-means clustering, and the point cloud data of trunk and branches remained to extract skeleton. Then the skeleton nodes were calculated by using breadth first search (BFS) method, quantifying method, and clustering method. Based on their connectivity, the skeleton nodes were connected to generate the tree skeleton, which would be smoothed by using Laplace smoothing method. In this paper, the point cloud data of a toona tree and peach tree were used to test the proposed method and for comparing the proposed method with the shortest path method to illustrate the robustness and superiority of the method. The experimental results showed that the shape of tree skeleton extracted was consistent with the real tree, which showed the method proposed in the paper is effective and feasible.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3