Feasibility Study of Using Mobile Laser Scanning Point Cloud Data for GNSS Line of Sight Analysis

Author:

Chen Yuwei1ORCID,Zhu Lingli1,Tang Jian2ORCID,Pei Ling3ORCID,Kukko Antero1,Wang Yiwu1,Hyyppä Juha1,Hyyppä Hannu4

Affiliation:

1. Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland

2. GNSS Research Center, Wuhan University, Wuhan, Hubei, China

3. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China

4. Department of Real Estate, Planning and Geoinformatics, Aalto University, Espoo, Finland

Abstract

The positioning accuracy with good GNSS observation can easily reach centimetre level, supported by advanced GNSS technologies. However, it is still a challenge to offer a robust GNSS based positioning solution in a GNSS degraded area. The concept of GNSS shadow matching has been proposed to enhance the GNSS based position accuracy in city canyons, where the nearby high buildings block parts of the GNSS radio frequency (RF) signals. However, the results rely on the accuracy of the utilized ready-made 3D city model. In this paper, we investigate a solution to generate a GNSS shadow mask with mobile laser scanning (MLS) cloud data. The solution includes removal of noise points, determining the object which only attenuated the RF signal and extraction of the highest obstruction point, and eventually angle calculation for the GNSS shadow mask generation. By analysing the data with the proposed methodology, it is concluded that the MLS point cloud data can be used to extract the GNSS shadow mask after several steps of processing to filter out the hanging objects and the plantings without generating the accurate 3D model, which depicts the boundary of GNSS signal coverage more precisely in city canyon environments compared to traditional 3D models.

Funder

Suomen Akatemia

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3