Digital Audio Scene Recognition Method Based on Machine Learning Technology

Author:

Sun Sihua1ORCID

Affiliation:

1. Anhui Art College, Hefei, Anhui Province 230011, China

Abstract

Audio scene recognition is a task that enables devices to understand their environment through digital audio analysis. It belongs to a branch of the field of computer auditory scene. At present, this technology has been widely used in intelligent wearable devices, robot sensing services, and other application scenarios. In order to explore the applicability of machine learning technology in the field of digital audio scene recognition, an audio scene recognition method based on optimized audio processing and convolutional neural network is proposed. Firstly, different from the traditional audio feature extraction method using mel-frequency cepstrum coefficient, the proposed method uses binaural representation and harmonic percussive source separation method to optimize the original audio and extract the corresponding features, so that the system can make use of the spatial features of the scene and then improve the recognition accuracy. Then, an audio scene recognition system with two-layer convolution module is designed and implemented. In terms of network structure, we try to learn from the VGGNet structure in the field of image recognition to increase the network depth and improve the system flexibility. Experimental data analysis shows that compared with traditional machine learning methods, the proposed method can greatly improve the recognition accuracy of each scene and achieve better generalization effect on different data.

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3