Recommendation Model Based on Semantic Features and a Knowledge Graph

Author:

Liu Yudong1ORCID,Chen Wen1ORCID

Affiliation:

1. School of Computer Science, South China Normal University, Guangzhou 510631, China

Abstract

In the field of information science, how to help users quickly and accurately find the information they need from a tremendous amount of short texts has become an urgent problem. The recommendation model is an important way to find such information. However, existing recommendation models have some limitations in case of short text recommendation. To address these issues, this paper proposes a recommendation model based on semantic features and a knowledge graph. More specifically, we first select DBpedia as a knowledge graph to extend short text features of items and get the semantic features of the items based on the extended text. And then, we calculate the item vector and further obtain the semantic similarity degrees of the users. Finally, based on the semantic features of the items and the semantic similarity of the users, we apply the collaborative filtering technology to calculate prediction rating. A series of experiments are conducted, demonstrating the effectiveness of our model in the evaluation metrics of mean absolute error (MAE) and root mean square error (RMSE) compared with those of some recommendation algorithms. The optimal MAE for the model proposed in this paper is 0.6723, and RMSE is 0.8442. The promising results show that the recommendation effect of the model on the movie field is significantly better than those of these existing algorithms.

Funder

Guangzhou Science and Technology Bureau

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference31 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Context-Awareness-Based Intelligent Accuracy Recommendation Algorithm for Business English Teaching Resources;2022 Global Reliability and Prognostics and Health Management (PHM-Yantai);2022-10-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3