Affiliation:
1. School of Computer Science, South China Normal University, Guangzhou 510631, China
Abstract
In the field of information science, how to help users quickly and accurately find the information they need from a tremendous amount of short texts has become an urgent problem. The recommendation model is an important way to find such information. However, existing recommendation models have some limitations in case of short text recommendation. To address these issues, this paper proposes a recommendation model based on semantic features and a knowledge graph. More specifically, we first select DBpedia as a knowledge graph to extend short text features of items and get the semantic features of the items based on the extended text. And then, we calculate the item vector and further obtain the semantic similarity degrees of the users. Finally, based on the semantic features of the items and the semantic similarity of the users, we apply the collaborative filtering technology to calculate prediction rating. A series of experiments are conducted, demonstrating the effectiveness of our model in the evaluation metrics of mean absolute error (MAE) and root mean square error (RMSE) compared with those of some recommendation algorithms. The optimal MAE for the model proposed in this paper is 0.6723, and RMSE is 0.8442. The promising results show that the recommendation effect of the model on the movie field is significantly better than those of these existing algorithms.
Funder
Guangzhou Science and Technology Bureau
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献