Can Repetitive Small Magnitude-Induced Seismic Events Actually Cause Damage?

Author:

Taylor Oliver-Denzil S.1ORCID,Lester Alanna P.1,Lee Theodore A.2,McKenna Mihan H.1

Affiliation:

1. U.S. Army Corps of Engineers, Engineer Research and Development Center, Geotechnical and Structures Laboratory, Vicksburg, MS 39180, USA

2. U.S. Army Corps of Engineers, Engineer Research and Development Center, USACE Reachback Operations Center, Mobile, AL 36602, USA

Abstract

Geoengineering activities such as reservoir impoundment, mining, wastewater injection, geothermal systems, and CO2 capture have been linked directly to induced seismicity. With the industrial boom in natural shale gas production regions previously aseismic areas have seen an exponential growth in the frequency of small magnitude events, with multiple events observed in close proximity within a 24-hour time period. While the overwhelming majority of induced seismic research has focused on the causality, the potential risk posed to critical federal infrastructure has escaped scrutiny. This proposes the question, “Can repetitive small magnitude-induced seismic events actually cause damage?” A review of the potential risk is presented herein, concluding that a simplistic definitive statement of whether single or multiple small magnitude-induced seismic events do or do not cause damage to critical infrastructure cannot be justified, and warrants additional study. However, recent observations and research suggest the likelihood that these geoengineering-induced events can and do cause detrimental degradation of the subsurface (damaging the overlying structure) is not insignificant.

Funder

Army, Acquisition, Logistics and Technology (ASAALT) Military Engineering Direct Research program AT40 “Remote Assessment of Critical Infrastructure”

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3