Context Transfer in Reinforcement Learning Using Action-Value Functions

Author:

Mousavi Amin1,Nadjar Araabi Babak12,Nili Ahmadabadi Majid12

Affiliation:

1. Cognitive Robotics Lab, Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, P.O. Box 14395-515, Tehran, Iran

2. School of Cognitive Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5746, Tehran, Iran

Abstract

This paper discusses the notion of context transfer in reinforcement learning tasks. Context transfer, as defined in this paper, implies knowledge transfer between source and target tasks that share the same environment dynamics and reward function but have different states or action spaces. In other words, the agents learn the same task while using different sensors and actuators. This requires the existence of an underlying common Markov decision process (MDP) to which all the agents’ MDPs can be mapped. This is formulated in terms of the notion of MDP homomorphism. The learning framework isQ-learning. To transfer the knowledge between these tasks, the feature space is used as a translator and is expressed as a partial mapping between the state-action spaces of different tasks. TheQ-values learned during the learning process of the source tasks are mapped to the sets ofQ-values for the target task. These transferredQ-values are merged together and used to initialize the learning process of the target task. An interval-based approach is used to represent and merge the knowledge of the source tasks. Empirical results show that the transferred initialization can be beneficial to the learning process of the target task.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference11 articles.

1. Lecture Notes in Artificial Intelligence,2002

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3