Cotton Cellulose-Derived Hydrogel and Electrospun Fiber as Alternative Material for Wound Dressing Application

Author:

Jirawitchalert Supidcha1ORCID,Mitaim Samon1,Chen Ching-Yi2ORCID,Patikarnmonthon Nisa13ORCID

Affiliation:

1. Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Rd., Phayathai, Ratchathewi, Bangkok 10400, Thailand

2. Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County 62102, Taiwan

3. Mahidol University-Osaka University: Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Rd., Phayathai, Ratchathewi, Bangkok 10400, Thailand

Abstract

Cotton has been recognized as a useful biomaterial over decades, and it has been widely applied in the textile industry. However, a large amount of cotton waste is generated during the manufacturing processes, but it has been considered as a low-value product. With high content of cellulose remaining in cotton waste, our study focuses on transforming cotton cellulose into a valuable product. Cellulose was extracted from cotton waste and modified into two main materials for wound dressing application: hydrogel-based water absorbent materials and electrospun composite nanofibers. In order to enhance the water absorption, carboxymethyl cellulose (CMC), the modified cellulose with functional group prone to interact with water molecules, has been developed in this study. The hydrogel-based CMC was created by using the chemical cross-linking reaction of epichlorohydrin (ECH). The hydrogel demonstrated the swelling and reswelling ability by 1718 ± 137% and 97.95 ± 9.76%, respectively. Meanwhile, cellulose/PEG in trifluoroacetic acid (TFA) was successfully fabricated as nonwoven composite by a conventional electrospinning technique. The fabrics provided highly appropriated properties as wound dressing, including the following: water absorption was up to 1300 times and water vapor permeability controlled in the range of 2163–2285 g·m−2·day−1. This showed the preliminary information for recovering cotton waste into valuable products.

Funder

Coordinating Center for Thai Government Science and Technology Scholarship Students

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3