Characteristics of Winter Clouds and Precipitation over the Mountains of Northern Beijing

Author:

Ma Xincheng123,Bi Kai1ORCID,Chen Yunbo1,Chen Yichen12,Cheng Zhigang3

Affiliation:

1. Beijing Weather Modification Office, Beijing 100089, China

2. Beijing Key Laboratory of Cloud, Precipitation and Atmospheric Water Resources (LCPW), Beijing Meteorological Bureau, Beijing 100089, China

3. Institute of Urban Meteorology, CMA, Beijing 100089, China

Abstract

There are few studies which reported the characteristics of winter clouds and precipitation in the Haituo Mountains of Northern Beijing where the 2022 Winter Olympic Games will be held. This paper outlines comprehensive datasets, including the surface measurements, remote sensing and aircraft measurements, to study cloud and precipitation characteristics over the mountainous terrain. The analysis results show (1) high-level trough and vortex were the main weather system in all 12 cases. (2) 58% of precipitation occurred only at night, and only 8% of snowfall occurred only at daytime, but under the surface inverse trough snowfall (in 4 of the 12 cases) persisted from night to day peaking at 20 hours; Snowfall persisted at least 3 hours in 83% of the snowfall, 5–10 hours in 50% of cases, and more than 10 hours in 33% of the storms. In 67% of cases, the maximum snowfall occurred within the initial 1-2 hours. (3) In 12 cases, 83% of orographic clouds reached Yan Jiaping, after increased southwesterly winds, resulting in visibility below 100 m. (4) during snowfall, The dominant wind direction is southwest. The start of the snowfall corresponded with an increase in southwesterly wind. The snowfall is maintained according to with the strengthening of southwesterly wind and dissipated accordingly with the receding of southwesterly wind. Whenever the snowfall stopped, the northwest wind was strong at all heights. (5) The first peak value of integral liquid water appeared in the early stage of snow, and we also observed integral liquid water increases with orographic cloud uplift, presenting potentially favorable seeding opportunities in 10 cases. (6) The primary crystal habits collected at Yan Jiaping during steady snowfall were rimed and aggregated planar dendrites.

Funder

Natural Science Foundation of Beijing Municipality

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3