Effects of Electric Field on the SHS Flame Propagation of the Si-C System, Examined by the Use of the Heterogeneous Theory

Author:

Makino Atsushi1ORCID

Affiliation:

1. Institute of Aeronautical Technology, Japan Aerospace Exploration Agency, 7-44-1 Jindaiji-Higashi, Chofu, Tokyo, Japan

Abstract

Relevant to the self-propagating high-temperature synthesis (SHS) process, an analytical study has been conducted to investigate the effects of electric field on the combustion behavior because the electric field is indispensable for systems with weak exothermic reactions to sustain flame propagation. In the present study, use has been made of the heterogeneous theory which can satisfactorily account for the premixed mode of the bulk flame propagation supported by the nonpremixed mode of particle consumption. It has been confirmed that, even for the SHS flame propagation under electric field, being well recognized to be facilitated, there exists a limit of flammability, due to heat loss, as is the case for the usual SHS flame propagation. Since the heat loss is closely related to the representative sizes of particles and compacted specimen, this identification provides useful insight into manipulating the SHS flame propagation under electric field, by presenting appropriate combinations of those sizes. A fair degree of agreement has been demonstrated through conducting an experimental comparison, as far as the trend and the approximate magnitude are concerned, suggesting that an essential feature has been captured by the present study.

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Condensed Matter Physics,Fuel Technology,General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3