Phenotyping Chronic Pelvic Pain Based on Latent Class Modeling of Physical Examination

Author:

Fenton B. W.1,Grey S. F.2,Reichenbach M.2,McCarroll M.1,Von Gruenigen V.1

Affiliation:

1. Department of Obstetrics and Gynecology, Summa Health System, 525 E Market Street, Akron, OH 44309-2090, USA

2. Department of Epidemiology and Biostatistics, College of Public Health, Kent State University, Kent Hall 136C, Kent, OH 44242, USA

Abstract

Introduction. Defining clinical phenotypes based on physical examination is required for clarifying heterogeneous disorders such as chronic pelvic pain (CPP). The objective of this study was to determine the number of classes within 4 examinable regions and then establish threshold and optimal exam criteria for the classes discovered. Methods. A total of 476 patients meeting the criteria for CPP were examined using pain pressure threshold (PPT) algometry and standardized numeric scale (NRS) pain ratings at 30 distinct sites over 4 pelvic regions. Exploratory factor analysis, latent profile analysis, and ROC curves were then used to identify classes, optimal examination points, and threshold scores. Results. Latent profile analysis produced two classes for each region: high and low pain groups. The optimal examination sites (and high pain minimum thresholds) were for the abdominal wall region: the pair at the midabdomen (PPT threshold depression of > 2); vulvar vestibule region: 10:00 position (NRS > 2); pelvic floor region: puborectalis (combined NRS > 6); vaginal apex region: uterosacral ligaments (combined NRS > 8). Conclusion. Physical examination scores of patients with CPP are best categorized into two classes: high pain and low pain. Standardization of the physical examination in CPP provides both researchers and general gynecologists with a validated technique.

Publisher

Hindawi Limited

Subject

Anesthesiology and Pain Medicine,Neurology (clinical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3