Affiliation:
1. School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China
2. Department of Computer Science and Software Engineering, Auburn University, Auburn, AL 36849, USA
Abstract
Indoor localization based on existent WiFi signal strength is becoming more and more prevalent and ubiquitous. Unfortunately, the WiFi received signal strength (RSS) is susceptible by multipath, signal attenuation, and environmental changes, which is the major challenge for accurate indoor localization. To overcome these limitations, we propose the cluster k-nearest neighbor (KNN) algorithm with 5 G WiFi signal to reduce the environmental interference and improve the localization performance without additional equipment. In this paper, we propose three approaches to improve the performance of localization algorithm. For one thing, we reduce the computation effort based on the coarse localization algorithm. For another, according to the detailed analysis of the 2.4 G and 5 G signal fluctuation, we expand the real-time measurement RSS before matching the fingerprint map. More importantly, we select the optimal nearest neighbor points based on the proposed cluster KNN algorithm. We have implemented the proposed algorithm and evaluated the performance with existent popular algorithms. Experimental results demonstrate that the proposed algorithm can effectively improve localization accuracy and exhibit superior performance in terms of localization stabilization and computation effort.
Funder
National Natural Science Foundation of China
Subject
Computer Networks and Communications,General Engineering
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献