Numerical Study on the Thermal Enhancement of Phase Change Material with the Addition of Nanoparticles and Changing the Orientation of the Enclosure

Author:

Teja P. Narasimha Siva1ORCID,Gugulothu S. K.1ORCID,Reddy P. Dinesh Sankar2ORCID,Ashraf Abdul1,Deepanraj B.3ORCID,Arasu P. Thillai4ORCID

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology, Andhra Pradesh, India

2. Department of Chemical Engineering, National Institute of Technology, Andhra Pradesh, India

3. College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, Saudi Arabia

4. College of Natural and Computational Science, Wollega University, Ethiopia

Abstract

The global demand of the heating and cooling applications gives a larger potential to study the thermal energy storage system. Phase change materials (PCM) that are used to charge, store, and discharge the heat energy are inferior in heat transfer characteristics. The properties of PCM can be improved by adding nanoparticles, changing the orientation of the enclosure or both. Two-dimensional transient numerical analysis on the effect of Grashoff number (5000, 13000, and 20000), nanoparticle type (Al2O3, CuO, and MWCNT), and volume concentration (0%, 1%, 3%, and 5%) added in RT 42 PCM and orientation of square enclosure (30, 45, and 60°) to enhance the heat transfer rate is carried out. The thermophysical properties of the nano-PCM are evaluated and presented. From the results, it is affirmed that the melt fraction of the PCM rises with the increase in Gr and volume concentration of the nanoparticles up to an optimum level. The MWCNT-based nano-PCM attained a larger portion of melt fraction followed by Al2O3, CuO, and pure PCM. It is noted that an orientation of 60° and 45° will convert more quantities of pure PCM and nano-PCM into liquid fraction, respectively. The (3% MWCNT/RT-42 PCM) filled in 45° oriented container attained the highest melt fraction by 3.4%, 2.04%, and 2.94% than (3% Al2O3/RT-42 PCM), (1%CuO/RT-42 PCM), and pure PCM. The variation in the maximum melt fraction of the nanomaterial is because of the change in thermophysical characteristics of the nano-PCM.

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3