Ocean Observation Data Prediction for Argo Data Quality Control Using Deep Bidirectional LSTM Network

Author:

Jiang Fan1ORCID,Ma Jitong2ORCID,Wang Baosen1ORCID,Shen Feifei1ORCID,Yuan Lingling1ORCID

Affiliation:

1. National Center of Ocean Standards and Metrology (NCOSM), Tianjin 300112, China

2. School of Information Science and Technology, Dalian Maritime University, Dalian 116026, China

Abstract

With the rapid development of maritime technologies, a huge amount of ocean data has been acquired through the state-of-the-art ocean equipment to get better understanding and development of ocean. The prediction and correction of oceanic observation data play a fundamental and important role in the oceanic relevant applications, including both civilian and military fields. On the basis of Argo data, aiming at predicting and correcting the oceanic observation data, we propose an ocean temperature and salinity prediction approach in this paper. In our approach, firstly, bounded nonlinear function is utilized for dataset quality control, which can effectively eliminate the influence of spikes or outliers in Argo data. Then, RBF neural network is used for high-resolution Argo dataset construction. Finally, a bidirectional LSTM framework is proposed to predict and analyze the ocean temperature and salinity on the basis of BOA Argo data. Experimental results demonstrate that the proposed bidirectional LSTM framework can accurately predict the ocean temperature and salinity and enable outstanding performance in oceanic observation data prediction and correction. The proposed approach is also important for the realization of Argo dataset automatic quality control.

Funder

Chinese National Key Research and Development Program

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3