Digitalization of Cross-Country Skiing Training Based on Multisensor Combination

Author:

Li Xingxing1ORCID,Song Lulu2,Wu Hao3

Affiliation:

1. Graduate School, Capital University of Physical Education and Sport, Beijing 100191, China

2. College of Physical Education and Sports, Beijing Normal University, Beijing 100875, China

3. Research Department, Capital University of Physical Education and Sport, Beijing 100191, China

Abstract

The status and role of science and technology in the field of modern competitive sports have become increasingly prominent. The construction of a scientific training command system is of great significance for improving the scientific level of the training process and deepening the digital cognition of ski training. This paper is based on the multisensor combination to conduct a digital research on cross-country skiing training, aiming to conduct in-depth research on the realization of human motion capture and the theory of motion inertial sensing. To build a scientific, formal, and malleable ski training program, the requirements for data acquisition, recording, and analysis are quite strict. For this, it is necessary to use scientific and reasonable tools combined with multiple algorithms to process information and data. During the experiment, accelerometers, gyroscopes, and magnetometers are selected as sensors to receive motion information, and recognition algorithms for identifying weightlessness, hybrid filtering algorithm, displacement estimation algorithm, and kinematic principles are adapted to process multisensor data using information integration technology. A human body motion model was established based on kinematic principles, and a cross-country skiing motion measurement program was designed. The experimental results show that, according to the combination of multisensing and video platform, the athlete’s posture prediction is adjusted, and the action on the track is more consistent, which can accelerate the athlete’s skiing speed and the size of the inclination angle to a large extent. It can affect the direction of the athlete’s borrowing force and the adjustment of gravity during the exercise. The tilt angle is expanded from 135° to 170°, and it can maintain good continuity during the exercise.

Funder

Beijing Key Laboratory of Sports Function Assessment and Technical Analysis

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference27 articles.

1. A comparison between alpine skiing, cross-country skiing and indoor cycling on cardiorespiratory and metabolic response;T. Stöggl;Journal of Sports Science and Medicine,2016

2. The Evolution of Research on Digital Education

3. Validation of Moticon’s OpenGo sensor insoles during gait, jumps, balance and cross-country skiing specific imitation movements

4. Industry 4.0 Implementation in B2B Companies: Cross-Country Empirical Evidence on Digital Transformation in the CEE Region

5. Impact of incline, sex and level of performance on kinematics during a distance race in classical cross-country skiing;T. Stöggl;Journal of Sports Science & Medicine,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3