A Pseudopotential Lattice Boltzmann Method for Simulation of Two-Phase Flow Transport in Porous Medium at High-Density and High–Viscosity Ratios

Author:

Ezzatneshan Eslam1ORCID,Goharimehr Reza1ORCID

Affiliation:

1. Aerospace Engineering Group, Department of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

In this work, the capability of a multiphase lattice Boltzmann method (LBM) based on the pseudopotential Shan-Chen (S-C) model is investigated for simulation of two-phase flows through porous media at high-density and high–viscosity ratios. The accuracy and robustness of the S-C LBM are examined by the implementation of the single relaxation time (SRT) and multiple relaxation time (MRT) collision operators with integrating the forcing schemes of the shifted velocity method (SVM) and the exact difference method (EDM). Herein, two equations of state (EoS), namely, the standard Shan-Chen (SC) EoS and Carnahan-Starling (CS) EoS, are implemented to assay the performance of the numerical technique employed for simulation of two-phase flows at high-density ratios. An appropriate modification in the forcing schemes is also used to remove the thermodynamic inconsistency in the simulation of two-phase flow problems studied at low reduced temperatures. The comparative study of these improvements of the S-C LBM is performed by considering an equilibrium state of a droplet suspended in the vapor phase. The solver is validated against the analytical coexistence curve for the liquid-vapor system and the surface tension estimation from the Laplace Law. Then, according to the results obtained, a conclusion has been made to choose an efficient numerical algorithm, including an appropriate collision operator, a realistic EoS, and an accurate forcing scheme, for simulation of multiphase flow transport through a porous medium. The patterns of two-phase flow transport through the porous medium are predicted using the present numerical scheme in different flow conditions defined by the capillary number and the dynamic viscosity ratio. The results obtained for the nonwetting phase saturation, penetration structure of the invading fluid, and the displacement patterns of two-phase flow in the porous medium are comparable with those reported in the literature. The present study demonstrates that the S-C LBM with employing the MRT-EDM scheme, CS EoS, and the modified forcing scheme is efficient and accurate for estimation of the two-phase flow characteristics through the porous medium.

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3