Intelligent Transport Surveillance Memory Enhanced Method for Detection of Abnormal Behavior in Video

Author:

Zhang Deng-Hui1ORCID

Affiliation:

1. College of Information Science, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China

Abstract

The purpose is to build a better intelligent transport platform and improve the performance of surveillance video abnormal behavior detection systems under rapid progress of science and technology, to process large-scale traffic surveillance video data. Autoencoder (AE) can detect abnormal behavior by using reconstruction error information. However, it cannot decode some abnormal codes well, so an AE based on memory needs improvement. The objective of this research is to propose a model where abnormal surveillance video can be handled. Therefore, a self-coding method based on memory enhancement is proposed. The steps are as follows: different abnormal behavior detection system algorithms are analyzed at first. The characteristics of three different methods, namely, the original autoencoder (AE), recurrent neural network, and convolutional neural network, are compared. Then, a memory module is proposed to enhance the automatic encoder to reduce the reconstruction error of normal samples and increase the reconstruction error of abnormal samples. The effect image is obtained by Laplace transform and convolution for the image with low definition, and the image with noise is processed by guided filtering. Finally, different methods are used for experimental comparison. Experiments show that, on the dataset Avenue, the frame-level result of the method proposed is about 2% higher than that of the optimal ConvLSTM in the comparison method; on the Ped1 and Ped2 datasets, it is also about 3% higher than ConvLSTM. The comparison of different methods shows that the effect of the method proposed is the best. The self-coding traffic surveillance video abnormal behavior detection system based on memory enhancement is designed with a modular structure and it uses the self-coding method based on memory enhancement. The effectiveness of the proposed method in the real scene is verified by comparing the performance of different methods in the same data set (Xia and Li, 2021).

Funder

Natural Science Foundation of Zhejiang Province

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference21 articles.

1. Networked Electric Vehicles for Green Intelligent Transportation

2. Analysis on the problems and improvement of informatization construction of basic Education in China under the epidemic crisis;S. Y. Chen;Advances in Education,2020

3. Video-based abnormal crowd behavior detection on bus;Z. Shen;Nanjing Li Gong Daxue Xuebao/Journal of Nanjing University of Science and Technology,2017

4. A new method of abnormal behavior detection using LSTM network with temporal attention mechanism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3