The Clinical Characteristics and Prognostic Nomogram for Head and Neck Cancer Patients with Bone Metastasis

Author:

Chi Changxing12,Fan Zhiyi3,Yang Binbin4,Sun He3ORCID,Zheng Zengpai1ORCID

Affiliation:

1. Department of Anorectal Surgery, The People’s Hospital of Pingyang, Wenzhou, Zhejiang, China

2. Yunnan Cancer Hospital, Third Affiliated to Kunming Medical University, Kunming, Yunan, China

3. Affiliated Hospital of Chengde Medical University, Chengde, Hebei, China

4. Wenzhou Medical University, Wenzhou, Zhejiang, China

Abstract

Background. Head and neck cancer (HNC) is the sixth most common malignancy globally, and many demographics and clinicopathological factors influence its prognosis. This study aimed to construct and validate a prognostic nomogram to predict the prognosis of HNC patients with bone metastasis (BM). Methods. A total of 326 patients with BM from HNC were collected from the SEER database as the subjects of this study. In a ratio of 7 to 3, patients were randomly divided into training and validation groups. Independent prognostic factors for HNC patients with BM were identified by univariate and multivariate Cox regression analysis. The nomogram for predicting the prognosis was constructed, and the model was evaluated by receiver operating characteristic curves, calibration curves, and decision curve analysis. Result. The independent prognostic factors for HNC patients with BM included age, primary site, lung metastasis, and chemotherapy. The area under the curve predicting overall survival at 12, 24, and 36 months was 0.768, 0.747, and 0.723 in the training group and 0.729, 0.723, and 0.669 in the validation group, respectively. The calibration curves showed good agreement between the predicted and actual values for overall survival. In addition, the decision curve analysis showed that this prognostic nomogram model has a high clinical application. Conclusion. This study developed and validated a nomogram to predict overall survival in HNC patients with BM. The prognostic nomogram has high accuracy and utility to inform survival estimation and individualized treatment decisions.

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3