Impact Responses of Composite Cushioning System considering Critical Component with Simply Supported Beam Type

Author:

Lu Fu-de12,Gao De12

Affiliation:

1. Ningbo Institute of Technology, Zhejiang University, Ningbo 315100, China

2. Zhejiang Provincial Key Lab of Part Rolling Technology, Ningbo 315100, China

Abstract

In some microelectronic products, one or several components can be idealized as simply supported beam type and viewed as vulnerable elements or critical component due to the fact that they are destroyed easily under impact loadings. The composite cushioning structure made of expanded polyethylene (EPE), and expanded polystyrene (EPS) was utilized to protect the vulnerable elements against impact loadings during transportation. The vibration equations of composite cushioning system were deducted and virtual mass method was applied to predict impact behavior of critical component. Numerical results indicate that virtual mass method is appropriate for computing impact response of composite cushioning system with vulnerable element of simply supported beam type, which is affirmed by the fact that the impact responses of structure element in terms of velocity- and displacement-time curves are almost unchanged when virtual mass is smaller than a certain value. The results in this paper make it possible for installation of packaging optimization design.

Funder

Twelfth National Five-Year Science and Technology Projects

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3