Discussion on Advanced Seepage Reduction Characteristics of Working Face under Seepage-Damage Coupling

Author:

Feng Feisheng1ORCID,Zhang Jiqiang1ORCID,Yang Zhen2ORCID,Pang Dongdong1,Zhang Jing1

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Anhui, Huainan 232001, China

2. College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China

Abstract

The water burst of roof on working face has been one of the significant geotechnical engineering problems that needs to be urgently resolved. The coupling effects of seepage and damage on the amount and intensity of water inrush from the roof are critically important. In this paper, the seepage-damage coupling mathematical model of the aquifer in the working face is studied, and the seepage-damage coupling mechanics model at different stages of the aquifer is established. Under the coupling of permeability and damage, the water-soil characteristics of the aquifer in the 101163 working face of Mindong were numerically simulated by establishing the constitutive relation between vertical stress and permeability coefficient. The numerical results show that the stress concentration factor of the mining stress field gradually increases with the coal seam mining. The water-flowing fractured zone of the overburden is close to the communication of the quaternary aquifer. When the coal seam is excavated 250–300 m. Three free surfaces appear in the groundwater pressure field, and a large falling funnel is formed to establish a deep flow S-well well flow model. The research on the mining stress field and seepage field is carried out in combination with the Jakob formula. It is found that two sectors with reduced permeability of the fan surface are formed in front of the work. The variation law of the apocalyptic permeability infiltration under different mining distances, different coal seam thicknesses, different water pressures, and different roof management modes is studied systematically. The research indicates that the seepage flow under the condition of seepage infiltration of the lower aquifer should be between 50% and 100% of the traditional calculation method. The research results can help to deepen the understanding of the process of water inrush under the coupling of stress and seepage.

Funder

Natural Science Research Program of Anhui Universities

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3