Affiliation:
1. School of Mechanical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
Abstract
The detection of fastener defects is an important task for ensuring the safety of railway traffic. The earlier automatic inspection systems based on computer vision can detect effectively the completely missing fasteners, but they have weaker ability to recognize the partially worn ones. In this paper, we propose a method for detecting both partly worn and completely missing fasteners, the proposed algorithm exploits the first and second symmetry sample of original testing fastener image and integrates them for improved representation-based fastener recognition. This scheme is simple and computationally efficient. The underlying rationales of the scheme are as follows: First, the new virtual symmetrical images really reflect some possible appearance of the fastener; then the integration of two judgments of the symmetrical sample for fastener recognition can somewhat overcome the misclassification problem. Second, the improved sparse representation method discarding the training samples that are “far” from the test sample and uses a small number of samples that are “near” to the test sample to represent the test sample, so as to perform classification and it is able to reduce the side-effect of the error identification problem of the original fastener image. The experimental results show that the proposed method outperforms state-of-the-art fastener recognition methods.
Funder
National Natural Science Foundation of China
Subject
General Engineering,General Mathematics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献