Wind-Induced Coupling Vibration Effects of High-Voltage Transmission Tower-Line Systems

Author:

Zhang Meng1ORCID,Zhao Guifeng1ORCID,Wang Lulu1ORCID,Li Jie23ORCID

Affiliation:

1. School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China

2. College of Civil Engineering, Tongji University, Shanghai 200092, China

3. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China

Abstract

A three-dimensional finite element model of a 500 kV high-voltage transmission tower-line coupling system is built using ANSYS software and verified with field-measured data. The dynamic responses of the tower-line system under different wind speeds and directions are analyzed and compared with the design code. The results indicate that wind speed plays an important role in the tower-line coupling effect. Under the low wind speed, the coupling effect is less obvious and can be neglected. With increased wind speed, the coupling effect on the responses of the tower gradually becomes prominent, possibly resulting in the risk of premature failure of the tower-line system. The designs based on the quasi-static method stipulated in the current design code are unsafe because of the ignorance of the adverse impacts of coupling vibration on the transmission towers. In practical engineering, when the quasi-static method is still used in design, the results for the design wind speed should be multiplied by the corresponding tower-line coupling effect amplifying coefficient δ.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3