(E)-9-Octadecenoic Acid Ethyl Ester Derived from Lotus Seedpod Ameliorates Inflammatory Responses by Regulating MAPKs and NF-κB Signalling Pathways in LPS-Induced RAW264.7 Macrophages

Author:

Xie Chuanqi1ORCID,Wang Shufen1,Cao Mingyuan12,Xiong Wei1ORCID,Wu Lei1ORCID

Affiliation:

1. Institute of Applied Chemistry, Jiangxi Academic of Sciences, Nanchang 330096, China

2. Faculty of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330000, China

Abstract

Inflammation is generally considered a key risk factor in the progress of several chronic diseases, such as arthritis, gastritis, and hepatitis. Natural products with anti-inflammatory ability have played a great role in the process of overcoming these inflammatory diseases. In this study, we evaluated the anti-inflammatory activities of ten natural compounds derived from lotus seedpod and discovered (E)-9-octadecenoic acid ethyl ester (E9OAEE) inhibited the production of nitric oxide (NO) optimally in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Furthermore, we explored the effects of E9OAEE on inflammatory responses and the underlying mechanisms in LPS-induced RAW264.7 macrophages. The results indicated that E9OAEE significantly suppressed the production of NO, prostaglandin E2 (PGE2), and tumour necrosis factor-α (TNFα) in a dose-dependent manner. The protein expression and mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX2) were inhibited by pretreatment of E9OAEE. Furthermore, E9OAEE restrained the phosphorylation of mitogen-activated protein kinase (MAPKs) family members, ERK, P38, and JNK stimulated by LPS-treated for 30 min and prevented the nuclear translocation of nuclear factor-kappa B (NF-κB) prompted by LPS-treated for 6 h in RAW264.7 macrophages. Taken together, we discovered an anti-inflammatory component from lotus seedpod and identified E9OAEE attenuated the inflammatory response in LPS-induced RAW264.7 macrophages probably by regulating the activation of MAPKs and NF-κB signalling pathways, which would provide some base for the development of new anti-inflammatory drugs.

Funder

Distinguished Young Scholars of Jiangxi Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3