Machine Learning and Novel Biomarkers Associated with Immune Infiltration for the Diagnosis of Esophageal Squamous Cell Carcinoma

Author:

Zhang Jipeng1,Zhang Nian2,Yang Xin3,Xin Xiangbin1,Jia Cheng-hui14,Li Sen15,Lu Qiang1ORCID,Jiang Tao1ORCID,Wang Tao1ORCID

Affiliation:

1. Department of Thoracic Surgery, Tangdu Hospital, The Air Force Military Medical University, Xi’an 710038, Shaanxi, China

2. Department of Anesthesiology, Tangdu Hospital, The Air Force Military Medical University, Xi’an 710038, Shaanxi, China

3. Pathology Department, The Second Affiliated Hospital of Shaan Xi University of Traditional Chinese Medicine, Xi’an 710038, Shaanxi, China

4. Department of Thoracic Surgery, The First Affiliated Hospital of Xi’an Medical College, Xi’an 710000, China

5. Department of Cardio-Thoracic Surgery, Luohe Centre Hospital, Luohe 462000, Henan, China

Abstract

Esophageal squamous cell carcinoma (ESCC) accounts for the main esophageal cancer type, which is related to advanced stage and poor survivals. Therefore, novel diagnostic biomarkers are critically needed. In the current research, we aimed to screen novel diagnostic biomarkers based on machine learning. The expression profiles were obtained from GEO datasets (GSE20347, GSE38129, and GSE75241) and TCGA datasets. Differentially expressed genes (DEGs) were screened between 47 ESCC and 47 nontumor samples. The LASSO regression model and SVM-RFE analysis were carried out for the identification of potential markers. ROC analysis was carried out to assess discriminatory abilities. The expressions and diagnostic values of the candidates in ESCC were demonstrated in the GSE75241 datasets and TCGA datasets. We also explore the correlations between the critical genes and cancer immune infiltrates using CIBERSORT. In this study, we identified 27 DEGs in ESCC: 5 genes were significantly elevated, and 22 genes were significantly decreased. Based on the results of the SVM-RFE and LASSO regression model, we identified five potential diagnostic biomarkers for ESCC, including GPX3, COL11A1, EREG, MMP1, and MMP12. However, the diagnostic values of only GPX3, MMP1, and MMP12 were confirmed in GSE75241 datasets. Moreover, in TCGA datasets, we further confirmed that GPX3 expression was distinctly decreased in ESCC specimens, while the expression of MMP1 and MMP12 was noticeably increased in ESCC specimens. Immune cell infiltration analysis revealed that the expression of GPX3, MMP1, and MMP12 was associated with several immune, such as T cells CD8, macrophages M2, macrophages M0, and dendritic cells activated. Overall, our findings suggested GPX3, MMP1, and MMP12 as novel diagnostic marker and correlated with immune infiltrates in ESCC patients.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Oncology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3