An Alternative Method for Traffic Accident Severity Prediction: Using Deep Forests Algorithm

Author:

Gan Jing1ORCID,Li Linheng1ORCID,Zhang Dapeng2ORCID,Yi Ziwei1ORCID,Xiang Qiaojun1ORCID

Affiliation:

1. Jiangsu Key Laboratory of Urban ITS, School of Transportation, Southeast University, Nanjing 211189, China

2. Big Data Research Center, Southwestern University of Finance and Economics, Chengdu 611130, China

Abstract

Traffic safety has always been an important issue in sustainable transportation development, and the prediction of traffic accident severity remains a crucial challenging issue in the domain of traffic safety. A huge variety of forecasting models have been proposed to meet this challenge. These models gradually evolved from linear to nonlinear forms and from traditional statistical regression models to current popular machine learning models. Recently, a machine learning algorithm called Deep Forests based on the decision tree ensemble has aroused widespread concern, which was proposed for the first time by a research team of Nanjing University. This algorithm was proved to be more accurate and robust in comparison with other machine learning algorithms. Motivated by this benefit, this study employs the UK road safety dataset to propose a novel method for predicting the severity of traffic accidents based on the Deep Forests algorithm. To verify the superiority of our proposed method, several other machine learning algorithm-based perdition models were implemented to predict traffic accident severity with the same dataset, and the prediction results show that the Deep Forests algorithm present good stability, fewer hyper-parameters, and the highest accuracy under different level of training data volume. It is expected that the findings from this study would be helpful for the establishment or improvement of effective traffic safety system within a sustainable transportation system, which is of great significance for helping government managers to establish timely proactive strategies in traffic accident prevention and effectively improve road traffic safety.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference31 articles.

1. Traffic accidents prediction and prominent influencing factors analysis based on fuzzy logic;X. Meng;Journal of Transportation Systems Engineering and Information Technology,2009

2. The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives

3. Analysis of traffic accidents on highways using latent class clustering;K. Li

4. The Identification of Patterns of Interurban Road Accident Frequency and Severity Using Road Geometry and Traffic Indicators

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3