Evaluation of GABAergic Transmission Modulation as a Novel Functional Target for Management of Multiple Sclerosis: Exploring Inhibitory Effect of GABA on Glutamate-Mediated Excitotoxicity

Author:

Gilani Ankit A.1,Dash Ranjeet Prasad2,Jivrajani Mehul N.2,Thakur Sandeep Kumar2,Nivsarkar Manish2

Affiliation:

1. Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, C/O-B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, S. G. Highway, Thaltej, Ahmedabad, Gujarat 380054, India

2. Department of Pharmacology and Toxicology, B. V. Patel Pharmaceutical Education and Research Development (PERD) Centre, S. G. Highway, Thaltej, Ahmedabad, Gujarat 380054, India

Abstract

Multiple sclerosis (MS) is an autoimmune inflammatory disease of the central nervous system (CNS) where the communication ability of nerve cells in the brain and spinal cord with each other gets impaired. Some current findings suggest the role of glutamate excitotoxicity in the development and progression of MS. An excess release of glutamate leads to the activation of ionotropic and metabotropic receptors, thus resulting in accumulation of toxic cytoplasmic Ca2+and cell death. However, it has been observed that gamma-aminobutyric acid-A (GABAA) receptors located in the nerve terminals activate presynaptic Ca2+/calmodulin-dependent signaling to inhibit depolarization-evoked Ca2+influx and glutamate release from isolated nerve terminals, which suggest a potential implication of GABAAreceptor in management of MS. With this proof of concept, we tried to explore the potential of selective GABAAreceptor agonists or positive allosteric modulators (diazepam and phenobarbitone sodium) and GABAAlevel enhancer (sodium valproate) for management of MS by screening them for their activity in experimental autoimmune encephalomyelitis (EAE) model in rats and cuprizone-induced demyelination model in mice. In this study, sodium valproate was found to show the best activity in the animal models whereas phenobarbitone sodium showed moderate activity. However, diazepam was found to be ineffective.

Publisher

Hindawi Limited

Subject

Pharmacology (medical),General Pharmacology, Toxicology and Pharmaceutics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3