Target Tactical Intention Recognition in Multiaircraft Cooperative Air Combat

Author:

Guanglei Meng12ORCID,Runnan Zhao1ORCID,Biao Wang1ORCID,Mingzhe Zhou1ORCID,Yu Wang12ORCID,Xiao Liang12ORCID

Affiliation:

1. School of Automation, Shenyang Aerospace University, Shenyang 100136, China

2. Liaoning Provincial Key Laboratory of Advanced Flight Control and Simulation Technology, Shenyang 100136, China

Abstract

Accurately identifying the tactical intention of the target can facilitate the prediction of the opponent’s behavior and improve the efficiency of collaborative decision. We have observed that traditional methods could achieve high recognition rate on conventional tactical intent. Nevertheless, their performance would deteriorate seriously when recognizing cooperative tactical intention in multiaircraft air combat environment. The main reason resides on key features that are difficult to extract for traditional methods. To this end, this paper proposes a novel approach to recognizing tactical intention of multiaircraft cooperative air combat. Specifically, we employ support vector machine (SVM) to forecast the attack intention based on 19 low correlation features. The purpose of the employment of SVM is to avoid local optimization and reduce data dimension. Moreover, we use three models, i.e., dynamic Bayesian network (DBN), radar model, and threat assessment model to extract crucial information regarding maneuver occupancy, silent penetration, and attack tendency. The extracted information would make great contribution to the recognition accuracy of six types of cooperative tactics. Finally, we learn a decision tree model on train samples processed by above two phases to classify different tactical intention. In order to verify the effectiveness of the proposed method, we use data sets from a loop simulation platform. The experimental results have approved the superiority of our method via the comparison to several baseline methods with respect to recognition rate and efficiency. In addition, we underline that our method also performs well on incomplete and uncertain information.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference29 articles.

1. Network for hypersonic UCAV swarms

2. Network for hypersonic UCAV swarms

3. Air target warfare intention recognition based on deep neural network;W. Zhou;Journal of Aeronautics,2018

4. Information Entropy-Based Intention Prediction of Aerial Targets under Uncertain and Incomplete Information

5. Unmanned aerial combat target intention prediction under incomplete information;D. Liu;Chinese Science: Information Science,2020

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3